$\mathcal {B}(\ell ^p)$ is never amenable
نویسندگان
چکیده
منابع مشابه
ug 2 00 9 B ( l p ) is never amenable
We show that, if E is a Banach space with a shrinking basis satisfying a certain condition, then the Banach algebra l∞(K(l2⊕E)) is not amenable; in particular, this is true for E = l with p ∈ (1,∞). As a consequence, l∞(K(E)) is not amenable for any infinite-dimensional Lp-space. This, in turn, entails the non-amenability of B(lp(E)) for any Lp-space E, so that, in particular, B(lp) and B(Lp[0,...
متن کاملB(ℓ p ) can never be amenable
We show that, if E is a Banach space with a basis satisfying a certain condition, then the Banach algebra l∞(K(l2 ⊕ E)) is not amenable; in particular, this is true for E = l with p ∈ (1,∞). As a consequence, l∞(K(E)) is not amenable for any infinite-dimensional Lp-space. This, in turn, entails the non-amenability of B(lp(E)) for any Lp-space E, so that, in particular, B(lp) and B(Lp[0, 1]) are...
متن کاملInheritance of Convexity for the $\mathcal{P}_{\min}$-Restricted Game
We consider restricted games on weighted graphs associated with minimum partitions. We replace in the classical definition of Myerson restricted game the connected components of any subgraph by the subcomponents corresponding to a minimum partition. This minimum partition Pmin is induced by the deletion of the minimum weight edges. We provide a characterization of the graphs satisfying inherita...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Mathematical Society
سال: 2010
ISSN: 0894-0347
DOI: 10.1090/s0894-0347-10-00668-5